
Next-generation sequencing (NGS) methods1 provide 
cheap and reliable large-scale DNA sequencing. They 
are used extensively for de novo sequencing2, for disease 
mapping3, for quantifying expression levels through RNA 
sequencing4–6 and in population genetic studies7–9.

In NGS methods, a whole genome, or targeted 
regions of the genome, is randomly digested into small 
fragments (or short reads) that get sequenced and are 
then either aligned to a reference genome or assembled10. 
Having aligned the fragments of one or more individuals 
to a reference genome, ‘SNP calling’ identifies variable 
sites, whereas ‘genotype calling’ determines the genotype 
for each individual at each site.

NGS data can suffer from high error rates that are 
due to multiple factors, including base-calling and align-
ment errors. Moreover, many NGS studies rely on low- 
coverage sequencing (<5× per site per individual, on 
average), for which there is high probability that only one 
of the two chromosomes of a diploid individual has been 
sampled at a specified site. Under such circumstances, 
accurate SNP calling and genotype calling are difficult, 
and there is often considerable uncertainty associated 
with the results. It is crucial to quantify and account for 
this uncertainty, as it influences downstream analyses 
based on the inferred SNPs and genotypes, such as the 
identification of rare mutations, the estimation of allele 
frequencies and association mapping.

One method for reducing uncertainty associated with 
genotype and SNP calling is to sequence target regions 
deeply (at >20× coverage). However, the ever-increasing  
demand for larger samples suggests that medium‑ 
(5–20×) or low-coverage sequencing will be the most 
common and cost-effective study design in many appli-
cations of NGS for years to come. For example, the 1000 
Genomes Project pilot phase9 relied on approximately 

3× coverage to sequence 176 individuals genome-wide. 
For the identification of low-frequency variants, this 
design is more cost-efficient than deeper sequencing in 
fewer individuals. Likewise, in association studies, map-
ping power is typically maximized by sequencing many  
individuals at low depth11, rather than sequencing  
fewer individuals at a high depth.

Alternatively, reducing and quantifying the uncer-
tainty associated with SNP and genotype calling may 
be accomplished using sophisticated algorithms; there-
fore, these have recently been the subject of extensive 
research9,12–15. Most contemporary algorithms use a 
probabilistic framework. So-called ‘genotype likelihoods’ 
— which incorporate errors that may have been intro-
duced in base calling, alignment and assembly — are 
coupled with prior information, such as allele frequen-
cies and patterns of linkage disequilibrium (LD). The 
result is a SNP and genotype call and an associated 
measure of uncertainty (which is often described by a 
‘quality score’), both of which have a concrete statistical 
interpretation.

Here we review this research and provide general 
guidelines for genotype and SNP calling in NGS stud-
ies. Converting the raw output of NGS technology into a 
final set of SNP and genotype data involves a number of 
steps (summarized in FIG. 1), each of which contributes 
to the accuracy of the final SNP and genotype calls. We 
start at the beginning of this process by briefly review-
ing recent developments in the methods used for base 
calling and alignment. We then review and discuss sev-
eral recent algorithms for SNP and genotype calling and 
address how the uncertainties in the resulting calls can 
be accommodated in downstream analyses. Finally, we 
make some general recommendations for the analysis 
of NGS data.
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Likelihoods
Functions expressing the 
probability of observing  
the data — for example, 
next-generation sequencing 
data — given a parameter, 
such as a genotype or an 
allele frequency.
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Abstract | Meaningful analysis of next-generation sequencing (NGS) data, which are 
produced extensively by genetics and genomics studies, relies crucially on the accurate 
calling of SNPs and genotypes. Recently developed statistical methods both improve 
and quantify the considerable uncertainty associated with genotype calling, and will 
especially benefit the growing number of studies using low- to medium-coverage data. 
We review these methods and provide a guide for their use in NGS studies.
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Base calling and alignment
The main principle underlying NGS technologies is 
sequencing-by-synthesis. In brief, tens-to-hundreds 
of millions of clusters of small ssDNA templates are 
‘read’ simultaneously by sequentially building up com-
plementary bases. The synthesis process is captured in 
a series of fluorescence images, and base-calling algo-
rithms infer the actual nucleotide information from the 
obtained fluorescence-intensity data for each cluster of 
DNA templates. They then assign a measure of uncer-
tainty (or quality score) to each base call. The result-
ing short-read data are then assembled into a genome. 
When a reference genome is available, the primary 
approach used to assemble a newly sequenced genome 
is alignment (also known as ‘read mapping’), in which 
the basic task is to align each short read onto an avail-
able reference genome. Here we review the key aspects 
of base calling and alignment.

Base calling and quality scores. Base-calling procedures 
vary according to the sequencing platform used, all of 
which are prone to a different type of error. For the 454 
platform, base calling involves inferring the length of 
each homopolymer from the observed fluorescence 
intensity. The main challenge stems from the fact that 
the variance of signal intensity for a specific homopoly-
mer length is large, resulting in high error rates in inser-
tion and deletion (indel) calls. For the Illumina platform, 
indel errors are rare, but the overall miscall error rate 
is typically around 1%. Here, the main complication 
arises from the synthesis process becoming desyn-
chronized between different copies of DNA templates  
in the same cluster. Base calling becomes less accurate in  
later cycles as the extent of asynchrony is exacerbated 
with each sequencing cycle. The SOLiD platform uses 
a two-base encoding scheme in which each fluorescent 
dye colour represents four dinucleotide combinations. 
Each base of the DNA template is examined twice 
in this system and a length m nucleotide sequence is 
represented as a length m – 1 colour sequence. A 
major complication in ‘colour calling’ arises from 
biases in fluorescence intensities that appear in later  
machine cycles.

In addition to identifying nucleotides, base-calling 
algorithms produce per-base quality scores by using 
noise estimates from image analysis. Some sequencing 
platforms adopt quality values that are defined specifi-
cally for the platforms, but those quality values can be 
easily transformed into the standard Phred16 quality 
score, given by

 QPhred = -10 log10 P(error).			   (1)

Note that a Phred score of 20 corresponds to a 1% error 
rate in base calling.

The typical error rate of NGS data ranges from a few 
tenths of a per cent to several per cent, depending on 
the platform. Reducing the error rate of base calls and 
improving the accuracy of the per-base quality score 
have important implications for assembly, polymor-
phism detection and downstream population-genomic 
analyses. As such, several base-calling algorithms have 
been developed to optimize data acquisition for the 
more widely used NGS platforms: examples include 
Pyrobayes17 for the 454 platform; Rsolid18 for the  
SOLiD platform; and Ibis19 and BayesCall20,21 for  
the Illumina platform. These algorithms provide 
~5–30% improvement in error rates over the base-
calling methods developed by the manufacturers of the 
NGS platforms, and it has been shown that improved 
base-call accuracy can lead to a significant reduction in 
false-positive SNP calls and facilitate assembly when the 
coverage is low to moderate. However, some of the new 
methods tend to be either too computationally inten-
sive to be of broad practical use or have not been tested 
thoroughly. Although more-accurate image analysis and 
base-calling algorithms for NGS platforms continue to 
be developed, the default software packages currently 
accompanying NGS platforms are the ones that are most 
widely adopted by users.

Figure 1 | Steps for converting raw next-generation 
sequencing data into a final set of SNP or genotype 
calls. Pre-processing steps (shown in yellow) transform 
the raw data from next-generation sequencing technology 
into a set of aligned reads that have a measure of 
confidence, or quality score, associated with the bases  
of each read. The per-base quality scores produced by 
base-calling algorithms may need to be recalibrated to 
accurately reflect the true error rates. Depending on the 
number of samples and the depth of coverage, either a 
multi-sample calling procedure (green) or a single-sample 
calling procedure (orange) may then be applied to obtain 
SNP or genotype calls and associated quality scores.  
Note that the multi-sample procedure may include a 
linkage-based analysis, which can substantially improve 
the accuracy of SNP or genotype calls. Finally, 
post-processing (purple) uses both known data and 
simple heuristics to filter the set of SNPs and/or improve 
the associated quality scores. Optional, although 
recommended, steps are shown in dashed lines.
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Posterior probabilities
In this context, these are  
the probabilities of a 
particular genotype given  
observed data: they are 
calculated by incorporating 
the information from the 
next-generation sequencing 
data as well as some prior 
information.

Hashing
A procedure of creating a  
data structure that helps to 
accelerate alignment. It stores 
information about which reads 
or where in the reference 
genome a particular substring 
or subsequence occurs. Some 
hash-based aligners hash the 
reads, while others hash  
the reference genome. 

Paired-end reads
Sequencing of both the 
forward and reverse template 
of a DNA molecule, which is 
possible by inserting a primer 
sequence between the two 
ends of the read. The use of 
this technique greatly helps  
to increase assembly and 
alignment accuracy.

Alignment and assembly. The accuracy of the align-
ment has a crucial role in variant detection. Incorrectly 
aligned reads may lead to errors in SNP and genotype 
calling, so it is important for alignment algorithms to 
be able to cope with sequencing errors, as well as with 
potentially real differences (both point mutations and 
indels) between the reference genome and the sequenced 
genome that are due to polymorphisms. Furthermore, 
it is important for aligners to produce well-calibrated 
alignment (or mapping) quality values, as variant calls 
and their posterior probabilities depend on those scores.

The amount of sequence identity required between 
each read and the reference sequence is determined by a 
trade-off between accuracy and read depth. The optimal 
choice of the tolerable number of mismatches may differ 
between different organisms. For example, as popula-
tions of Drosophila melanogaster are more variable than 
human populations, using mapping criteria that are opti-
mized for analyses of human sequences may lead to a 
severe loss of sequencing depth in D. melanogaster. This, 
in turn, may lead to a potential for biases in the down-
stream analyses, as regions that harbour many natural 
polymorphisms will be underrepresented. Likewise, 
using alignment criteria that are appropriate for fruitflies 
in humans would lead to a large amount of incorrectly 
aligned reads.

Most alignment algorithms for NGS data are based 
on either ‘hashing’ or an effective data compression algo-
rithm called the ‘Burrows–Wheeler transform’ (BWT)22. 
BWT-based aligners (for example, Bowtie23, SOAP2 
(REF. 15) and BWA24) are fast, memory-efficient and par-
ticularly useful for aligning repetitive reads; however, 
they tend to be less sensitive than the state-of-the-art 
hash-based algorithms (for example, MAQ12, Novoalign 
and Stampy25). The Novoalign and Stampy aligners cur-
rently produce the most accurate overall results, while 
also being practical in terms of running time (see REF. 25 
for a detailed comparison of the performance of various 
aligners).

In general, alignment is more difficult for regions 
with higher levels of diversity between the reference 
genome and the sequenced genome. This difficulty can 
be ameliorated by the use of longer reads and paired-
end reads (see REF. 25 for further quantitative details). 
However, assembling highly diverse regions such as 
the major histocompatibility complex (MHC) remains 
a challenge. Using de novo assembly algorithms — 
which are based on graph-theoretic ideas26–30 that try to 
exploit overlap information to stitch together the reads 
into contiguous sequences — may provide a viable 
solution to this challenge. Combining such methods 
with alignment to study genetic variation in complex 
regions is likely to be an active area of research in the 
forthcoming years.

Recalibration of per-base quality scores. The raw 
Phred-scaled quality scores produced by base-calling 
algorithms may not accurately reflect the true base-
calling error rates14,15,31. In such a case, the raw quality 
scores need to be recalibrated so that a Phred score of Q 
more-accurately corresponds to an error rate of 10- Q/10, 

as implied by equation 1. Obtaining well-calibrated qual-
ity scores is important, as SNP and genotype calling at 
a specific position in the genome depends on both the 
base calls and the per-base quality scores of the reads 
overlapping the position.

In SOAPsnp14,15, per-base quality scores are recali-
brated by comparing a sequenced genome to the refer-
ence genome at sites with no known SNPs. A related 
alignment-based recalibration algorithm has been 
implemented in the GATK software32,33, which takes 
into account several covariates such as machine cycle 
and dinucleotide context. For all supposedly non- 
polymorphic sites, the bases that align to those sites are 
put into different categories classified by the following 
features: the raw quality score (produced by base call-
ing), the position of the base in the read, the dinucle-
otide context and the read group. For each category, the 
algorithm estimates the empirical quality score by using 
the number of mismatches with respect to the reference 
genome. Recalibrated quality scores are then estimated 
by adding to the raw quality scores the residual differ-
ences between empirical quality scores and the mis-
match rates implied by the raw quality scores, which 
are conditioned on various subsets of the features. This 
recalibration algorithm, which is adopted in the 1000 
Genomes Project9, can be applied to various sequenc-
ing platforms. As described above, the algorithm uses a 
set of supposedly non-polymorphic sites. If a compre-
hensive database of known SNPs is not available for the 
species under consideration, then one can first identify 
candidate polymorphic sites that are highly likely to 
be real and use the remaining sites in the recalibration 
procedure. In such a case, another round of SNP calling 
should be performed with recalibrated quality scores.

Genotype and SNP calling
The process of converting base calls and quality scores 
into a set of genotypes for each individual in a sample is 
often divided into two steps: genotype calling and SNP 
calling. SNP calling aims to determine in which posi-
tions there are polymorphisms or in which positions at 
least one of the bases differs from a reference sequence; 
the latter is also sometimes referred to as ‘variant call-
ing’. Genotype calling is the process of determining 
the genotype for each individual and is typically only 
done for positions in which a SNP or a ‘variant’ has 
already been called. We use the word ‘calling’ here to 
signify the estimation of one unique SNP or genotype. 
However, we note that some analyses can proceed with-
out determining the exact identity of each genotype, 
but instead allow uncertainty regarding genotypes to be  
incorporated directly into the analyses.

Genotype and SNP calling can proceed, as in early 
studies, by counting alleles at each site and using simple 
cutoff rules for when to call a SNP or genotype. More-
recent methods incorporate uncertainty in a probabilis-
tic framework. In the probabilistic framework, it is also 
possible to further incorporate additional information 
regarding allele frequencies and/or patterns of LD. We 
review these different approaches below, starting with 
the simple methods based on counting alleles.
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Figure 2 | A comparison of three genotype callers.  
A subset of the data (chromosome 20, bases 20,000,000–
25,000,000) for the 62 CEU individuals in both the 
HapMap Public Release no. 28 and the 1000 Genomes 
Pilot Project was genotype-called using the following 
methods: GATK Unified Genotyper32,33 applied to each 
individual independently (blue); GATK Unified Genotyper 
applied to all individuals collectively (red); and GATK 
Unified Genotyper applied to all individuals collectively, 
followed by Beagle42 using linkage disequilibrium (LD) 
information for genotype calling (black). For each of 
several quality thresholds, genotype calls with quality 
greater than the threshold were compared to HapMap 
data. Every such threshold thus entails both a proportion 
of called HapMap data and accuracy, relative to HapMap. 
For high call rates, genotyping the individuals 
collectively and using the LD‑based method Beagle 
provided marked improvements.

CEU individuals
One of the 11 populations  
in HapMap phase three. It 
consists of Utah residents  
with Northern and Western 
European ancestry from  
the Centre d’Etude du 
Polymorphisme Humain 
(CEPH) collection.

Bayes’ formula
A mathematical expression 
showing that a posterior 
probability can be found  
as the prior probability 
multiplied by the likelihood 
divided by a constant.

Correlated errors
Errors that do not occur 
independently of each other.  
An error that is observed in  
one position might increase the 
chance of observing another 
error in a neighbouring position.

Early methods for calling genotypes. Early NGS studies  
based both SNP and genotype calling on separate  
analyses of data from each individual sampled. Typically, 
analyses would first involve a filtering step in which only 
high-confidence bases would be kept. The most common 
cutoff used would be a Phred-type quality score of Q20 
(QPhred = 20). Genotype calling would then proceed for 
each individual by counting the number of times each 
allele is observed and using fixed cutoffs. SNP calling 
would then be performed based on the inferred geno-
types. For example34,35, one would first use a Q20 filter 
and then call a heterozygous genotype if the proportion 
of the non-reference allele is between 20% and 80%; oth-
erwise, a homozygous genotype would be called. This 
is a fairly standard procedure and works well when the 
sequencing depth is high (>20×), so that the probability 
of a heterozygous individual falling outside the 20–80% 
range is small. Related methods for genotype calling 
form the basis for the commercially available software 
in Roche’s GSMapper, the CLC Genomic Workbench 
and the DNSTAR Lasergene software. These methods 
can be improved by using more empirically determined 
cutoffs (as described in REF. 36).

Probabilistic methods. For moderate or low sequencing 
depths, genotype calling based on fixed cutoffs will typi-
cally lead to under-calling of heterozygous genotypes and 
the use of a simple filtering based on quality score leads 

to a loss of information regarding individual read quali-
ties. An additional disadvantage of this type of genotype 
calling is that it typically does not provide measures of 
uncertainty in the genotype inference. For this reason, 
several probabilistic methods have been developed that 
use the quality score to provide a posterior probability 
for each genotype12–15.

In brief, it is assumed that one can compute a geno-
type likelihood, p(X | G), for a genotype G. The symbol 
X represents, in this generic notation, all of the read data 
for a particular individual at a particular site. In conjunc-
tion with a genotype prior, p(G), Bayes’ formula is used 
to calculate p(G | X), which is the posterior probability 
of genotype G. The genotype with the highest posterior 
probability is generally chosen, and this probability, or 
perhaps the ratio between the highest and the second 
highest probabilities, is used as a measure of confidence. 
The advantages of the probabilistic methods are that 
they provide measures of statistical uncertainty when 
calling genotypes, they lead to higher accuracy of geno-
type calling, and they provide a natural framework for 
incorporating information regarding allele frequencies 
and patterns of LD.

Calculating genotype likelihoods. The genotype like-
lihood can be calculated using the quality scores for 
each read. Let Xi be the data in read i for a particular 
individual and a particular site with genotype G. The 
probability p(Xi | G) is then given by a simple rescaling 
of the quality score of Xi, and the genotype likelihood, 
p(X | G), can be calculated directly from the data by 
taking the product of p(Xi | G) over all i. There is an 
implicit assumption here of independence among reads, 
which may be violated in the presence of alignment 
errors or PCR artefacts. It has been suggested12 that a 
weighting scheme should be used that takes correlated 
errors into account. The genotype likelihoods can also 
be improved by recalibrating the per-base quality scores 
using empirical data, as discussed in the section regard-
ing base calling and alignment. When genotype calling 
is preceded by SNP calling, the information from the 
SNP-calling step can be incorporated into the genotype-
calling algorithm, leading to genotype likelihoods that 
are calculated by conditioning on the site containing a 
polymorphism.

Martin et al.37 also suggested estimating error rates 
directly from the read data for each site independ-
ently, instead of using quality scores. The advantage of 
such an approach is that genotype and SNP calling do 
not depend on the accuracy of the calculated quality 
scores. However, a disadvantage is that the considerable 
information regarding errors gained through the base-
calling and alignment process is lost. These approaches 
are very recent, and no research has been done to sys-
tematically compare the advantages and disadvantages 
of directly estimating error rates from the data. Ideally, 
error rates should be estimated from the data while 
incorporating information obtained during base calling  
and alignment.

Methods for calculating genotype likelihoods will 
probably be a topic of much future research. 
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Table 1 | A list of available non-commercial NGS genotype-calling software

Software Available from Calling method Prerequisites Comments Refs

SOAP2 http://soap.genomics.org.
cn/index.html

Single-sample High-quality variant 
database (for 
example, dbSNP)

Package for NGS data analysis, which includes a single 
individual genotype caller (SOAPsnp)

15

realSFS http://128.32.118.212/
thorfinn/realSFS/

Single-sample Aligned reads Software for SNP and genotype calling using single 
individuals and allele frequencies. Site frequency 
spectrum (SFS) estimation

-

Samtools http://samtools.
sourceforge.net/

Multi-sample Aligned reads Package for manipulation of NGS alignments, which 
includes a computation of genotype likelihoods 
(samtools) and SNP and genotype calling (bcftools)

53

GATK http://www.
broadinstitute.org/gsa/
wiki/index.php/The_
Genome_Analysis_Toolkit

Multi-sample Aligned reads Package for aligned NGS data analysis, which includes 
a SNP and genotype caller (Unifed Genotyper), 
SNP filtering (Variant Filtration) and SNP quality 
recalibration (Variant Recalibrator)

32,33

Beagle http://faculty.washington.
edu/browning/beagle/
beagle.html

Multi-sample LD Candidate 
SNPs, genotype 
likelihoods

Software for imputation, phasing and association that 
includes a mode for genotype calling

42

IMPUTE2 http://mathgen.stats.
ox.ac.uk/impute/
impute_v2.html

Multi-sample LD Candidate 
SNPs, genotype 
likelihoods

Software for imputation and phasing, including  
a mode for genotype calling. Requires fine-scale 
linkage map

44

QCall ftp://ftp.sanger.ac.uk/pub/
rd/QCALL

Multi-sample LD ‘Feasible’ 
genealogies at 
a dense set of 
loci, genotype 
likelihoods

Software for SNP and genotype calling, including a 
method for generating candidate SNPs without LD 
information (NLDA) and a method for incorporating  
LD information (LDA). The ‘feasible’ genealogies can 
be generated using Margarita (http://www.sanger.
ac.uk/resources/software/margarita)

54

MaCH http://genome.sph.umich.
edu/wiki/Thunder

Multi-sample LD Genotype 
likelihoods

Software for SNP and genotype calling, including a 
method (GPT_Freq) for generating candidate SNPs 
without LD information and a method (thunder_glf_freq) 
for incorporating LD information 

-

A more complete list is available from http://seqanswers.com/wiki/Software/list. LD, linkage disequilibrium; NGS, next-generation sequencing.

Prior probability
In the context of this Review, 
the probability of a genotype 
calculated without 
incorporating information  
from the next-generation 
sequencing data. Prior 
probabilities can be obtained 
from a set of reference data.

Maximum likelihood
The statistical principle of 
estimating a parameter by 
finding the value of the 
parameters that maximizes  
the likelihood function.

Imputation
The substitution of some  
value for a missing data point. 
In this context, it is the use of 
a set of reference haplotypes 
to infer a genotype for an 
individual, when data are 
missing or incomplete.

Assigning priors using single samples. In addition to 
computing the genotype likelihood, a prior probability 
for each genotype must be assumed in order to produce 
posterior probabilities for the genotypes. Suppose that a 
single individual is sequenced. The prior-genotype prob-
ability may be chosen to assign equal probability to all 
genotypes, or it can be based on external information 
— for example, from the reference sequence, SNP data-
bases or an available population sample. In the analysis 
of human data in SOAPsnp14,15, a prior is chosen by the 
use of dbSNP38. For example, if a G/T polymorphism 
is reported in dbSNP, the prior probabilities are set to 
be 0.454 for each of the genotypes GG and TT, 0.0909 
for GT and less than 10−4 for all other genotypes14,15. A 
similar approach is used in MAQ12. Notice that there is 
a strong weight against heterozygotes in order to avoid 
mistaking sequencing errors for real polymorphisms.

Assigning priors using multiple samples. Priors can be 
improved by jointly analysing multiple individuals. This 
can be done by considering allele frequencies, or geno-
type frequencies, estimated from larger data sets — for 
example, using maximum likelihood14,37. If allele frequen-
cies are known, genotype probabilities can then be cal-
culated using the Hardy–Weinberg equilibrium (HWE) 
assumption or other assumptions that relate allele fre-
quencies to genotype frequencies. Uncertainty in the 
estimate of the allele frequency can be incorporated 

by also assigning a prior to the allele frequency itself, 
instead of estimating the allele frequency. This prior 
can be derived either from the data or from population 
genetic theory.

In general, the use of information from multiple 
individuals when calling genotypes for a single individ-
ual should be of great help. For example, imagine that  
the genotype likelihoods for two genotypes — for example,  
genotypes AT and AA — are equally large. Based on 
this information alone, we should be equally likely to 
choose AT or AA when performing genotype calling. 
However, if we were provided with the information 
(from a large sample) that the frequency of the A allele in 
the study population was small — for example, around 
1% — we would be unlikely to choose the genotype AA. 
This is because the prior probability of observing AA  
is 10–4, whereas the prior probability of observing AT is 
approximately 2 × 10–2, assuming HWE.

Incorporating LD information. The approaches dis-
cussed so far assume that genotype calling is done inde-
pendently for each site. However, much can be gained 
from taking advantage of the pattern of LD at nearby 
sites. Several different population genetic methods have 
been developed for imputation of missing data in SNP 
data sets39–45. In brief, these methods use the pattern at 
linked sites to infer genotypes. As an example, consider 
a population in which the only haplotypes observed are 
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Figure 3 | The power of association mapping for 
next-generation sequencing data. Simulations of the 
power to detect association (p-value <0.05; dashed line) 
using various approaches for genotype calling at a 5% 
significance level. For each effect size, 50,000 simulations 
were performed for 1,000 cases and 1,000 controls 
assuming a population minor allele frequency (MAF)  
of 1% and a disease prevalence of 10%. The individual 
depth was simulated assuming a Poisson distribution 
with mean coverage of 4× and the sequence reads were 
sampled from the true genotypes, assuming an error rate 
of 1%. Genotype probabilities were calculated either by 
assuming a uniform genotype prior (red and light green) 
or by using the inferred MAF and Hardy–Weinberg 
equilibrium (purple and orange). Genotypes were called 
based on either the highest genotype probability  
(red and purple) or only for genotypes with a 
posterior-genotype probability (PP) >95% (light green). 
The called genotypes were tested using logistic 
regression, whereas the score statistic used the 
probability of the genotype, and therefore effectively 
integrates over the uncertainty in the genotype calls.

Likelihood ratio test
A method for testing statistical 
hypotheses based on 
comparing the maximum 
likelihood under two different 
models. In this context, the 
allele frequency in one model 
equals zero, whereas the 
frequency in the second model 
might be larger than zero.

ATA and CGC at three sites. If an individual is sam-
pled with genotypes A or C in the first site, A or C in 
the third site, but an unknown genotype in the second 
site, we might think that the unknown genotype in the 
second site is actually T or G. A straightforward adapta-
tion of these algorithms enables them to be used with 
NGS data. The use of LD patterns is a cornerstone of 
the 1000 Genomes Project, and it leads to a significant  
improvement in genotype-calling accuracy9.

A comparison of genotype-call accuracies. FIGURE 2 
compares the accuracy of the genotype calls resulting 
from three comparable methods for calling genotypes: 
independently for each individual, jointly for all indi-
viduals without using an LD‑based analysis and jointly 
for all samples using LD‑based analysis. For high call 

rates, the use of multiple individuals leads to a sub-
stantial increase in the accuracy of genotype calling 
over using single samples from approximately 80% 
to 87%. The use of LD information provides an even 
greater improvement in accuracy: approximately 96%. 
To obtain a similar level of accuracy without the use 
of LD information would require that approximately 
40% of the genotypes were non-calls; that is, they are 
left as missing data. Clearly, the use of LD patterns can 
substantially improve genotype calling when multiple 
samples have been sequenced. Even greater benefits 
can be derived when a high-quality reference data set, 
such as HapMap or SeattleSNPs, is available. The gain 
in accuracy is mostly obtained for SNPs of moderate- or 
high-allele frequencies. SNP and genotype calling for 
rare mutations, which would not be represented in any 
reference panel, may not improve much by the use of 
LD information.

SNP calling. So far, we have only discussed genotype 
calling. This issue is slightly different from the issue of 
how to call SNPs. In early NGS papers, in which only a 
single genome was analysed, SNP calling and genotype 
calling were more or less identical, as an inferred hetero-
zygous genotype or a homozygous non-reference geno-
type would imply the presence of a SNP. For larger data 
sets containing many individuals, a SNP would be called 
if any individual was heterozygous or homozygous for 
a non-reference allele. However, this might not be an 
optimal way of proceeding, because the expected false-
positive rate will increase linearly with the sample size. 
Furthermore, the information from multiple individuals 
is not best combined using called genotypes. Ideally, the 
joint posterior probability would be used to ascertain 
the probability that all genotypes are homozygous for 
the reference type, resulting in both a SNP call and an 
associated confidence. Alternatively, SNP calling can 
proceed, for example, by using a likelihood ratio test of 
the hypothesis of the population allele frequency being 
zero, using the methods for calculating the likelihood 
function described in REFS 11,37.

A list of programs for genotype and SNP calling is 
given in TABLE 1.

Filtering. If the posterior probabilities in each site are 
calculated accurately, then all information regarding 
errors is taken into account and there is no reason to 
add any additional filtering or perform any additional 
manipulation of the data. However, for many real data 
this is not the case, and genotype and SNP calls can be 
greatly improved by using a number of filtering steps. For 
example, the 1000 Genomes Project9 eliminated entire 
sequencing batches that showed too high a discrepancy 
with known genotypes from the HapMap data. This type 
of filtering will only be available in projects that aim to 
resequence individuals who have already been subject 
to genome-wide SNP genotyping. Projects based on 
organisms other than humans, or NGS on humans for 
which genotyping data are not already available, should 
therefore expect to observe higher error rates than those 
observed in the 1000 Genomes data.
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Figure 4 | The site frequency spectrum in next-generation sequencing data. 
Fifty megabases of sequence were simulated for 50 individuals assuming a mean 
(Poisson-distributed) sequencing depth of 4× per individual, a per-site error rate of 
0.003 and that 2% of all sites were variable. Because of the presence of missing data 
for one method, the data for all methods were subsampled down to a sample size of 
20 chromosomes, using only called genotypes. Panels a and b show the site frequency 
spectrum (SFS) for all sites and for sites with a probability of harbouring a SNP of 
>95%, respectively. Both panels show the true SFS (True), the SFS using genotype calls 
(GC) obtained by always choosing the genotype with the highest posterior probability 
(Max (GC)), and when only calling genotypes with a posterior probability of >95%  
(GC >0.95). Notice that genotype-based inferences tend to overestimate the amount 
of singletons. The excess of singletons can be reduced or eliminated by using priors, 
or filtering processes, that are biased against singletons. However, such procedures 
will typically tend to introduce other biases.

Other types of filtering based on deviations from the 
HWE — generally low-quality scores, systematic dif-
ferences in quality scores for major and minor alleles, 
aberrant LD patterns, extreme read depths, strand bias, 
and so on — can also help to improve the accuracy of 

genotype and SNP calling. The appropriate filters depend 
on the sequencing protocol and the upstream analyses. 
For example, a site with strand bias (where a dispropor-
tional number of plus and minus strands are observed) 
could be an indication of a problematic site that is more 
error prone and should be filtered out. However, if the 
sequencing has been performed on captured sequences, 
such as those used for exome capturing, then the bias 
might not be an indication of a problematic site but 
rather an artefact of the capture array.

Incorporating genotype uncertainty in analyses of NGS 
data. The choice of NGS genotype-calling strategies 
is ultimately related to the subsequent use of the data. 
Different applications might call for different genotype-
calling strategies. As genotype calling for low- or mod-
erate-coverage data entails some uncertainty, in many 
applications it may be particularly important to take this 
uncertainty into account. One of the most important 
applications of NGS is association-mapping studies. In 
the presence of genotype-calling uncertainty, standard 
methods for obtaining p‑values using allelic tests are not 
valid because of potential over-calling of heterozygotes or 
homozygotes11. However, if the error structure is the same 
in cases and controls, tests that are robust to violations 
from the HWE will not suffer from an excess of false posi-
tives. Nonetheless, they may suffer reduced power, as even 
a low level of genotyping errors can lead to a surprisingly 
strong decrease in power46 (FIG. 3). The decrease in power 
cannot be circumvented by increased filtering that is based 
on genotype quality score, as such filtering will typically  
only lead to a further reduction in power (FIG. 3).

However, the use of genotype posteriors allows the 
construction of valid tests that combine the probabilities 
from all individuals and effectively sums over all possible 
genotypes11,37. For sequencing data, such methods have 
been described for allelic tests15,37, and methods used for 
haplotype data, such as score statistics47 and Bayesian 
models48, are attractive approaches. These methods and 
others are reviewed in the context of haplotype imputation 
in REF. 45. Such methods lead to valid statistical tests in 
association mapping and can provide increased mapping 
power (FIG. 3). For LD-based methods, this means per-
forming the so-called multiple imputation: obtaining sam-
ples of multiple possible inferred data sets and weighting 
each by their relative probability. Most LD-based meth-
ods for genotype calling are developed for this purpose  
and can readily be applied to provide multiple samples.

Uncertainty in genotype calls will also be an impor-
tant consideration in population-genetic studies. In such 
studies, many inferences are based on allele frequencies, 
and ignoring genotype call uncertainty can lead to biased 
estimates49–51. The distribution of allele frequencies will 
be biased (FIG. 4), leading to biases in most of the com-
mon statistical methods applied in population genetics. 
An approach taken to address this problem in REF. 52 
involved calculating the posterior probability of the allele 
frequency for each site. Population-genetic approaches 
for estimating variability, detecting selection and quan-
tifying population substructure can then proceed by  
summing over these posterior probabilities.
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Recommendations
The analysis of NGS data is a fast-evolving field, and new 
statistical methods for analysing the data are constantly 
being developed. As such, recommendations for how to 
analyse NGS data may change from month to month. 
For example, a number of new tools have been devel-
oped as part of the 1000 Genomes Project9, but many 
of them have still not been published or subjected to 
peer review.

At present, we make the following recommendations 
regarding genotype and SNP calling. First, base calling 
and calculation of quality scores should be carried out 
using methods that have been thoroughly tested and 
benchmarked. We then recommend a recalibration of 
per-base quality scores as in GATK or SOAPsnp. For 
aligning short reads to a reference genome, we recom-
mend using a sensitive aligner such as Novoalign or 
Stampy; the latter can run in a hybrid mode that uses the 
efficient aligner BWA. Second, SNP calling should pro-
ceed by using methods that can incorporate data from 
all individuals in the sample simultaneously. SNP call-
ing can be done using likelihood ratio tests or Bayesian 
procedures, in which the prior distributions for the allele 
frequencies are estimated from the data. Third, geno-
type calling should also proceed by combining data from 
multiple individuals in a Bayesian framework. Fourth, 
when possible, LD‑based methods should be used to 
improve the accuracy of genotype and SNP calls.

Several additional steps can be taken to improve 
genotype calls, such as local realignments, combining 

results from multiple SNP- and genotype-calling algo-
rithms and post hoc filtering based on quality scores9. 
Finally, we also urge the incorporation of uncertainty in 
the subsequent statistical procedures for analysing the 
data. In particular, association-mapping studies based on 
low- or medium-coverage data should use tests of asso-
ciation based on summing over all possible genotypes 
and weighing them by their respective probabilities (as 
described in REF. 11).

Conclusions
Genotype calling and SNP calling for NGS data have 
matured from simple methods based on counting alle-
les to sophisticated methods that provide probabilis-
tic measures of uncertainty, and they can incorporate 
information from many individuals and linked sites. 
The probabilistic methods rely on accurate calcula-
tions of genotype likelihoods that incorporate informa-
tion regarding alignment or assembly uncertainty and 
base-calling uncertainty. Therefore, more research is 
warranted into the accuracy of genotype-likelihood cal-
culations and into the methods for improving genotype-
likelihood calculations. More research is also needed in a 
number of other areas, including improved development 
of LD-based methods and in methods for incorporat-
ing genotype probabilities into downstream analyses. 
NGS will be central in genomic and medical genetic 
studies for years to come, and it is worthwhile now to 
focus attention on forming a solid foundation for future 
research in these areas.

1.	 Metzker, M. Sequencing technologies — the next 
generation. Nature Rev. Genet. 11, 31–46 (2010).
This article provides an excellent Review of NGS 
technologies and their applications.

2.	 Li, R. et al. The sequence and de novo assembly of the 
giant panda genome. Nature 463, 311–317 (2010).

3. 	 Ng, S. B. et al. Exome sequencing identifies the cause 
of a mendelian disorder. Nature Genet. 42, 30–35 
(2010).

4.	 Nagalakshmi, U. et al. The transcriptional landscape 
of the yeast genome defined by RNA sequencing. 
Science 320, 1344–1349 (2008).

5.	 Guttman, M. et al. Ab initio reconstruction of cell type-
specific transcriptomes in mouse reveals the 
conserved multi-exonic structure of lincRNAs. Nature 
Biotech. 28, 503–510 (2010).

6.	 Trapnell, C. et al. Transcript assembly and 
quantification by RNA-seq reveals unannotated 
transcripts and isoform switching during cell 
differentiation. Nature Biotech. 28, 511–515 (2010).

7.	 Liti, G. et al. Population genomics of domestic and 
wild yeasts. Nature 458, 337–341 (2009).

8.	 Li, Y. et al. Resequencing of 200 human exomes 
identifies an excess of low-frequency non-synonymous 
coding variants. Nature Genet. 42, 969–972 (2010).

9.	 Durbin, R. M. et al. A map of human genome variation 
from population-scale sequencing. Nature 467, 
1061–1073 (2010).
This 1000 Genomes paper provides an application 
of many of the state‑of‑the-art methods for 
analysis of NGS data.

10.	 Flicek, P. & Birney, E. Sense from sequence reads: 
methods for alignment and assembly. Nature Methods 
6, S6–S12 (2009).

11.	 Kim S. Y. et al. Design of association studies with 
pooled or un-pooled next-generation sequencing data. 
Genet. Epidemiol. 34, 479–491 (2010).

12.	 Li, H., Ruan, J. & Durbin, R. M. Mapping short DNA 
sequencing reads and calling variants using mapping 
quality scores. Genome Res. 18, 1851–1858 (2008).

	 This paper describes MAQ, a forerunner  
of efficient, hash-based alignment algorithms  
for short reads. MAQ also produces genotype 

calls. The concept of read-mapping quality is 
introduced in this paper.

13.	 Li, J. B. et al. Multiplex padlock targeted sequencing 
reveal human hypermutable CpG variations. Genome 
Res. 19, 1606–1615 (2009).

14.	 Li, R. et al. SNP detection for massively parallel 
whole-genome resequencing. Genome Res. 19, 
1124–1132 (2009).

15.	 Li, R. et al. SOAP2: an improved ultrafast tool  
for short read alignment. Bioinformatics 25,  
1966–1967 (2009).

16.	 Ewing, B. & Green, P. Base-calling of automated 
sequencer traces using phred. II. Error probabilities. 
Genome Res. 8, 186–194 (1998).

17.	 Quinlan, A. R. et al. Pyrobayes: an improved base 
caller for SNP discovery in pyrosequences. Nature 
Methods 5, 179–181 (2008).

18.	 Wu, H, Irizarry, R. A. & Bravo, H. C.  
Intensity normalization improves color calling in SOLiD 
sequencing. Nature Methods 7, 336–337 (2010).

19.	 Kircher, M., Stenzel, U. & Kelso, J. Improved base 
calling for the Illumina Genome Analyzer using machine 
learning strategies. Genome Biol. 10, R83 (2009).

20.	 Kao, W. C., Stevens, K. & Song, Y. S. BayesCall: a 
model-based basecalling algorithm for high-
throughput short-read sequencing. Genome Res. 19, 
1884–1895 (2009).

21.	 Kao, W. C. & Song, Y. S. naiveBayesCall: an efficient 
model-based base-calling algorithm for high-
throughput sequencing. Lect. Notes Comp. Sci. 6044, 
233–247 (2010).

22.	 Burrows, M. & Wheeler, D. A block-sorting lossless 
data compression algorithm. Technical Report 124, 
Digital Equipment Corporation. HP Labs Technical 
Reports [online], http://www.hpl.hp.com/techreports/
Compaq-DEC/SRC-RR‑124.html (1994).

23.	 Langmead, B., Trapnell C., Pop M. & Salzberg, S. L. 
Ultrafast and memory-efficient alignment of short 
DNA sequences to the human genome. Genome Biol. 
10, R25 (2009).

24.	 Li, H. & Durbin, R. Fast and accurate short read 
alignment with Burrows-Wheeler transform. 
Bioinformatics 25, 1754–1760 (2009).

25.	 Lunter, G. & Goodson, M. Stampy: a statistical 
algorithm for sensitive and fast mapping of Illumina 
sequence reads. Genome Res. 27 Oct 2010 
(doi:10.1101/gr.111120.110).

26.	 Sundquist, A., Ronaghi, M., Tang, H., Pevzner, P. & 
Batzoglou, S. Whole-genome sequencing and 
assembly with high-throughput, short-read 
technologies. PLoS ONE 2, e484 (2007).

27.	 Zerbino, D. R. & Birney, E. Velvet: algorithms for 
de novo short read assembly using de Bruijn graphs. 
Genome Res. 18, 821–829 (2008).

28.	 Butler, J. et al. ALLPATHS: de novo assembly of  
whole-genome shotgun microreads. Genome Res. 18, 
810–820 (2008).

29.	 Simpson, J. T. et al. ABySS: a parallel assembler  
for short read sequence data. Genome Res. 19,  
1117–1123 (2009).

30.	 Chaisson, M. J. P., Brinza, D. & Pevzner, P. A.  
De novo fragment assembly with short mate-paired 
reads: does the read length matter? Genome Res. 19, 
336–346 (2009).

31.	 Brockman, W. et al. Quality scores and SNP detection 
in sequencing‑by‑synthesis systems. Genome Res. 18, 
763–770 (2008).

32.	 McKenna, A. et al. The Genome Analysis Toolkit: a 
MapReduce framework for analyzing next-generation 
DNA sequencing data. Genome Res. 20, 1297–1303 
(2010).

33.	 DePristo, M. A. et al. A framework for variation 
discovery and genotyping using next-generation DNA 
sequencing data. Nature Genet. 10 Apr 2011 
(doi:10.1038/ng.806).

34.	 Harismendy, O. et al. Evaluation of next generation 
sequencing platforms for population targeted 
sequencing studies. Genome Biol. 10, R32 (2009).

35.	 Wang J. et al. The diploid sequence of an Asian 
individual. Nature 456, 60–65 (2009).

36.	 Hedges, D. et al. Exome sequencing of a 
multigenerational human pedigree. PLoS ONE 4, 
e8232 (2009).

37.	 Martin, E. R. et al. SeqEM: an adaptive genotype-
calling approach for next- generation sequencing 
studies. Bioinformatics 26, 2803–2810 (2010).

R E V I E W S

450 | JUNE 2011 | VOLUME 12	  www.nature.com/reviews/genetics

© 2011 Macmillan Publishers Limited. All rights reserved

http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html


38.	 Sherry, S. T. et al. dbSNP: the NCBI database  
of genetic variation. Nucleic Acids Res. 29, 308–311 
(2001).

39.	 Dai, J. Y. et al. Imputation methods to improve 
inference in SNP association studies. Genet. 
Epidemiol. 30, 690–702 (2006).

40.	 Minichiello, M. J. & Durbin, R. Mapping trait  
loci by use of inferred ancestral recombination 
graphs. Am. J. Hum. Genet. 79, 910–922  
(2006).

41.	 Scheet, P. & Stephens, M. A fast and flexible 
statistical model for large-scale population genotype 
data: applications to inferring missing genotypes 
and haplotypic phase. Am. J. Hum. Genet.78,  
629–644 (2006).

42.	 Browning, S. R. & Browning, B. L. Rapid and accurate 
haplotype phasing and missing-data inference for 
whole-genome association studies by use of localized 
haplotype clustering. Am. J. Hum. Genet. 81,  
1084–1097 (2007).

43.	 Marchini, J., Howie, B., Myers, S., McVean, G. & 
Donnely, P. A new multipoint method for genome-wide 
association studies via imputation of genotypes. 
Nature Genet. 39, 906–913 (2007).

44.	 Howie, B. N., Donnelly, P. & Marchini, J.  
A flexible and accurate genotype imputation  
method for the next generation of genome-wide 
association studies. PLoS Genet. 5, e1000529 
(2009).

45.	 Marchini, J. & Howie, B. Genotype imputation for 
genome-wide association studies. Nature Rev. Genet. 
11, 499–511 (2010).
This Review provides a comprehensive overview of 
available statistical methods for imputing genotypes 
and discusses various uses of imputation.

46.	 Huang, L. et al. The relationship between imputation 
error and statistical power in genetic association 
studies in diverse populations. Am. J. Hum. Genet. 85, 
692–698 (2009).

47.	 Schaid, D. J., Rowland, C. M., Tines, D. E.,  
Jacobson, R. M. & Poland, G. A. Score tests for 
association between traits and haplotypes when 
linkage phase is ambiguous. Am. J. Hum. Genet. 70, 
425–434 (2002).

48.	 Servin, B. & Stephens, M. Imputation-based analysis 
of association studies: candidate genes and 
quantitative traits. PLoS Genet. 3, e114 (2007).

49.	 Hellmann, I. et al. Population genetic analysis of 
shotgun assemblies of genomic sequences from 
multiple individuals. Genome Res. 18, 1020–1029 
(2008).

50.	 Johnson, P. L. F. & Slatkin, M. Accounting for bias 
from sequencing error in population genetic estimates. 
Mol. Biol. Evol. 25, 199–206 (2008).

51.	 Johnson, P. L. F. & Slatkin, M. Inference of 
population genetic parameters in metagenomics.  
A clean look at messy data. Genome Res. 16,  
1320–1327 (2006).

52.	 Yi, X. et al. Sequencing of 50 human exomes reveals 
adaptation to high altitude. Science 329, 75–78 (2010).

53.	 Li, H. et al. The sequence alignment/map (SAM) format 
and SAMtools. Bioinformatics. 25, 2078–2079 (2009).

54.	 Le, S. Q. & Durbin, R. SNP detection and genotyping 
from low-coverage sequencing data on multiple diploid 
samples. Genome Res. 27 Oct 2010 (doi:10.1101/
gr.113084.110).

Acknowledgements
This work was supported in part by NIH grants NIGMS 
R01-HG003229–05 and R01-HG003229–0551 to R.N., an 
NSF CAREER grant DBI-0846015 to Y.S.S. and an NIH 
National Research Service Award Trainee appointment on 
T32-HG00047 to J.S.P.

Competing interests statement
The authors declare no competing financial interests.

FURTHER INFORMATION
Rasmus Nieslen’s homepage: http://cteg.berkeley.edu/
nielsen.html
Yun S. Song’s homepage: http://www.eecs.berkeley.edu/~yss
1000 Genomes Project: http://www.1000genomes.org
Nature Reviews Genetics series on Study Designs:  
http://www.nature.com/nrg/series/studydesigns/index.html

ALL LINKS ARE ACTIVE IN THE ONLINE PDF

R E V I E W S

NATURE REVIEWS | GENETICS	  VOLUME 12 | JUNE 2011 | 451

© 2011 Macmillan Publishers Limited. All rights reserved

http://cteg.berkeley.edu/nielsen.html
http://cteg.berkeley.edu/nielsen.html
http://www.eecs.berkeley.edu/~yss
http://www.1000genomes.org
http://www.nature.com/nrg/series/studydesigns/index.html

	Abstract | Meaningful analysis of next-generation sequencing (NGS) data, which are produced extensively by genetics and genomics studies, relies crucially on the accurate calling of SNPs and genotypes. Recently developed statistical methods both improve and quantify the considerable uncertainty associated with genotype calling, and will especially benefit the growing number of studies using low- to medium-coverage data. We review these methods and provide a guide for their use in NGS studies.
	Figure 1 | Steps for converting raw next-generation sequencing data into a final set of SNP or genotype calls. Pre-processing steps (shown in yellow) transform the raw data from next-generation sequencing technology into a set of aligned reads that have a measure of confidence, or quality score, associated with the bases of each read. The per-base quality scores produced by base-calling algorithms may need to be recalibrated to accurately reflect the true error rates. Depending on the number of samples and the depth of coverage, either a multi-sample calling procedure (green) or a single-sample calling procedure (orange) may then be applied to obtain SNP or genotype calls and associated quality scores. Note that the multi-sample procedure may include a linkage-based analysis, which can substantially improve the accuracy of SNP or genotype calls. Finally, post-processing (purple) uses both known data and simple heuristics to filter the set of SNPs and/or improve the associated quality scores. Optional, although recommended, steps are shown in dashed lines.
	Base calling and alignment
	Genotype and SNP calling
	Figure 2 | A comparison of three genotype callers. A subset of the data (chromosome 20, bases 20,000,000–25,000,000) for the 62 CEU individuals in both the HapMap Public Release no. 28 and the 1000 Genomes Pilot Project was genotype-called using the following methods: GATK Unified Genotyper32,33 applied to each individual independently (blue); GATK Unified Genotyper applied to all individuals collectively (red); and GATK Unified Genotyper applied to all individuals collectively, followed by Beagle42 using linkage disequilibrium (LD) information for genotype calling (black). For each of several quality thresholds, genotype calls with quality greater than the threshold were compared to HapMap data. Every such threshold thus entails both a proportion of called HapMap data and accuracy, relative to HapMap. For high call rates, genotyping the individuals collectively and using the LD‑based method Beagle provided marked improvements.
	Table 1 | A list of available non-commercial NGS genotype-calling software
	Figure 3 | The power of association mapping for next-generation sequencing data. Simulations of the power to detect association (p-value <0.05; dashed line) using various approaches for genotype calling at a 5% significance level. For each effect size, 50,000 simulations were performed for 1,000 cases and 1,000 controls assuming a population minor allele frequency (MAF) of 1% and a disease prevalence of 10%. The individual depth was simulated assuming a Poisson distribution with mean coverage of 4× and the sequence reads were sampled from the true genotypes, assuming an error rate of 1%. Genotype probabilities were calculated either by assuming a uniform genotype prior (red and light green) or by using the inferred MAF and Hardy–Weinberg equilibrium (purple and orange). Genotypes were called based on either the highest genotype probability (red and purple) or only for genotypes with a posterior-genotype probability (PP) >95% (light green). The called genotypes were tested using logistic regression, whereas the score statistic used the probability of the genotype, and therefore effectively integrates over the uncertainty in the genotype calls.
	Figure 4 | The site frequency spectrum in next-generation sequencing data. Fifty megabases of sequence were simulated for 50 individuals assuming a mean (Poisson-distributed) sequencing depth of 4× per individual, a per-site error rate of 0.003 and that 2% of all sites were variable. Because of the presence of missing data for one method, the data for all methods were subsampled down to a sample size of 20 chromosomes, using only called genotypes. Panels a and b show the site frequency spectrum (SFS) for all sites and for sites with a probability of harbouring a SNP of >95%, respectively. Both panels show the true SFS (True), the SFS using genotype calls (GC) obtained by always choosing the genotype with the highest posterior probability (Max (GC)), and when only calling genotypes with a posterior probability of >95% (GC >0.95). Notice that genotype-based inferences tend to overestimate the amount of singletons. The excess of singletons can be reduced or eliminated by using priors, or filtering processes, that are biased against singletons. However, such procedures will typically tend to introduce other biases.
	Recommendations
	Conclusions



